Broyden's method is an extension of the secant method for an equation in one real variable to an arbitrary Hilbert space setting. It is a result of Griewank that the Broyden iterates converge locally superlinearly to a root if, in addition to the assumptions needed in finite dimension, the initial approximation for the Frechet derivative differs from the Frechet derivative at the root only by a compact operator. In this paper a new and much simpler proof of this theorem is given based on the concept of collective compactness.
机构:
Cameron Univ, Dept Math Sci, Lawton, OK 73505 USACameron Univ, Dept Math Sci, Lawton, OK 73505 USA
Argyros, I. K.
Cho, Y. J.
论文数: 0引用数: 0
h-index: 0
机构:
Gyeongsang Natl Univ, Dept Math Educ, Jinju 660701, South Korea
Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi ArabiaCameron Univ, Dept Math Sci, Lawton, OK 73505 USA
Cho, Y. J.
Khattri, S. K.
论文数: 0引用数: 0
h-index: 0
机构:
Stord Haugesund Univ Coll, Dept Engn, Haugesund, NorwayCameron Univ, Dept Math Sci, Lawton, OK 73505 USA
机构:
Sci Univ Tokyo, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1620825, JapanSci Univ Tokyo, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1620825, Japan
Ogasawara, H
Yabe, H
论文数: 0引用数: 0
h-index: 0
机构:
Sci Univ Tokyo, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1620825, JapanSci Univ Tokyo, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1620825, Japan