NASH EQUILIBRIA FOR NONCOOPERATIVE N-PERSON GAMES IN NORMAL-FORM

被引:27
|
作者
TIJS, SH
机构
关键词
D O I
10.1137/1023038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:225 / 237
页数:13
相关论文
共 50 条
  • [1] EXISTENCE THEOREMS OF NASH EQUILIBRIA FOR NONCOOPERATIVE N-PERSON GAMES
    TAN, KK
    YU, J
    YUAN, XZ
    [J]. INTERNATIONAL JOURNAL OF GAME THEORY, 1995, 24 (03) : 217 - 222
  • [2] Essential equilibria of n-person noncooperative games
    Yu, J
    [J]. JOURNAL OF MATHEMATICAL ECONOMICS, 1999, 31 (03) : 361 - 372
  • [3] Finding the Nash equilibria of n-person noncooperative games via solving the system of equations
    Li, Huimin
    Xiang, Shuwen
    Xia, Shunyou
    Huang, Shiguo
    [J]. AIMS MATHEMATICS, 2023, 8 (06): : 13984 - 14007
  • [4] On nash equilibria in normal-form games with vectorial payoffs
    Ropke, Willem
    Roijers, Diederik M.
    Nowe, Ann
    Radulescu, Roxana
    [J]. AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [5] On nash equilibria in normal-form games with vectorial payoffs
    Willem Röpke
    Diederik M. Roijers
    Ann Nowé
    Roxana Rădulescu
    [J]. Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [6] NASH EQUILIBRIA IN N-PERSON GAMES WITHOUT CONVEXITY
    YAO, JC
    [J]. APPLIED MATHEMATICS LETTERS, 1992, 5 (05) : 67 - 69
  • [7] Universal Nash equilibria in n-person differential games
    Averboukh, Yu. V.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 26 - 40
  • [8] A survey on algorithms for Nash equilibria in finite normal-form games
    Li, Hanyu
    Huang, Wenhan
    Duan, Zhijian
    Mguni, David Henry
    Shao, Kun
    Wang, Jun
    Deng, Xiaotie
    [J]. COMPUTER SCIENCE REVIEW, 2024, 51
  • [9] Further results on essential Nash equilibria in normal-form games
    Oriol Carbonell-Nicolau
    [J]. Economic Theory, 2015, 59 : 277 - 300
  • [10] A differentiable homotopy to compute Nash equilibria of n-person games
    P. Jean-Jacques Herings
    Ronald J.A.P. Peeters
    [J]. Economic Theory, 2001, 18 : 159 - 185