Conformally invariant nonlinear electrodynamic actions and its non-abelian extensions

被引:0
|
作者
Cirilo-Lombardo, Diego Julio [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, MV Keldysh Inst, Fed Res Ctr, Inst Appl Math, Miusskaya Sq 4, Moscow 125047, Russia
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Inst Fis Interdisciplinaria & Aplicada INFINA, Buenos Aires, Argentina
[3] Univ Buenos Aires, CONICET, Inst Fis Interdisciplinaria & Aplicada INFINA, Buenos Aires, Argentina
关键词
Conformal models; non-abelian electrodynamics; geometry and symmetries;
D O I
10.1142/S0219887823502389
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, formal theoretical aspects concerning conformally invariant functional actions of electrodynamics are presented and discussed. In particular, the origin of the conformal and duality invariant Lagrangians of [I. Bandos et al., J. High Energy Phys. 10 (2021) 031; I. Bandos, K. Lechner, D. Sorokin and P. Townsend, Phys. Rev. D 102 (2020) 121703] (e.g. ModMax) and also Born-Infeld types are analyzed being its non-abelian counterpart presented and discussed explicitly for the gauge group SU(2). Implications on the properties of the gravitational field are briefly discussed by means of new symmetries of the field equations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] ACTIONS OF NON-ABELIAN GROUPS AND INVARIANT-GAMMA
    LIMA, R
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1982, 38 : 141 - 144
  • [2] Non-Abelian extensions and homotopies
    Baues, HJ
    K-THEORY, 1996, 10 (02): : 107 - 133
  • [3] Non-abelian cohomology of abelian Anosov actions
    Katok, A
    Nitica, V
    Török, A
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 259 - 288
  • [4] On non-abelian extensions of Leibniz algebras
    Liu, Jiefeng
    Sheng, Yunhe
    Wang, Qi
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 574 - 587
  • [5] NON-ABELIAN EXTENSIONS OF MINIMAL ROTATIONS
    Haboeck, Ulrich
    Kulagin, Vyacheslav
    COLLOQUIUM MATHEMATICUM, 2009, 117 (01) : 1 - 17
  • [6] Feasible classes of non-Abelian extensions
    Byott, Nigel P.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 601 : 1 - 27
  • [7] CROSSED COMPLEXES AND NON-ABELIAN EXTENSIONS
    BROWN, R
    HIGGINS, PJ
    LECTURE NOTES IN MATHEMATICS, 1982, 962 : 39 - 50
  • [8] Non-Abelian Invariant Feature Detection
    Gur, Yaniv
    Sochen, Nir
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3410 - 3413
  • [9] Non-abelian local invariant cycles
    Tsai, Yen-Lung
    Xia, Eugene Z.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2365 - 2367
  • [10] EFFECTIVE ACTIONS IN NON-ABELIAN THEORIES
    DADDA, A
    DAVIS, AC
    DIVECCHIA, P
    PHYSICS LETTERS B, 1983, 121 (05) : 335 - 338