Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes

被引:0
|
作者
Shevelev, Vladimir [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
Bertrand postulate; Ramanujan prime; Labos prime; over-Ramanujan prime; over-Labos prime; prime gaps;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the parallel properties of the Ramanujan primes and a symmetric counterpart, the Labos primes. Further, we study all primes with these properties (generalized Ramanujan and Labos primes) and construct two kinds of sieves for them. Finally, we give a further natural generalization of these constructions and pose some conjectures and open problems.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ON RAMANUJAN PRIMES
    Axler, Christian
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2020, 63 (01) : 67 - 93
  • [2] On generalized Ramanujan primes
    Christian Axler
    The Ramanujan Journal, 2016, 39 : 1 - 30
  • [3] ON A CONJECTURE ON RAMANUJAN PRIMES
    Laishram, Shanta
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (08) : 1869 - 1873
  • [4] On generalized Ramanujan primes
    Axler, Christian
    RAMANUJAN JOURNAL, 2016, 39 (01): : 1 - 30
  • [5] RAMANUJAN'S CONGRUENCE PRIMES
    Parnoff, Ellise
    Raghuram, A.
    arXiv, 1600,
  • [6] Ramanujan's congruence primes
    Parnoff, Ellise
    Raghuram, A.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2025, 18 (01):
  • [7] On Ramanujan expansions and primes in arithmetic progressions
    Laporta, Maurizio
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2024, 94 (02): : 209 - 224
  • [8] Existence of Ramanujan primes for GL(3)
    Ramakrishnan, D
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 711 - 717
  • [9] Ramanujan Primes and Bertrand's Postulate
    Sondow, Jonathan
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (07): : 630 - 635
  • [10] NEW UPPER BOUNDS FOR RAMANUJAN PRIMES
    Srinivasan, Anitha
    Ares-Gastesi, Pablo
    GLASNIK MATEMATICKI, 2018, 53 (01) : 1 - 7