Risk maps for cities: Incorporating streets into geostatistical models

被引:3
|
作者
Rose, Erica Billig [1 ,4 ]
Lee, Kwonsang [2 ]
Roy, Jason A. [1 ]
Small, Dylan [2 ]
Ross, Michelle E. [1 ]
Castillo-Neyra, Ricardo [1 ,3 ]
Levy, Michael Z. [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[3] Univ Peruana Cayetano Heredia, Sch Publ Hlth, Hlth Unit 1, Zoonot Dis Res Lab, Lima, Peru
[4] 713 Blockley Hall,423 Guardian Dr, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
INLA; Gaussian field; City streets; Chagas disease; Vector; Triatoma infestans;
D O I
10.1016/j.sste.2018.08.003
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Vector-borne diseases commonly emerge in urban landscapes, and Gaussian field models can be used to create risk maps of vector presence across a large environment. However, these models do not account for the possibility that streets function as permeable barriers for insect vectors. We describe a methodology to transform spatial point data to incorporate permeable barriers, by distorting the map to widen streets, with one additional parameter. We use Gaussian field models to estimate this additional parameter, and develop risk maps incorporating streets as permeable barriers. We demonstrate our method on simulated datasets and apply it to data on Triatoma infestans, a vector of Chagas disease in Arequipa, Peru. We found that the transformed landscape that best fit the observed pattern of Triatoma infestans infestation, approximately doubled the true Euclidean distance between neighboring houses on different city blocks. Our findings may better guide control of re-emergent insect populations. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [1] Geostatistical COVID-19 infection risk maps for Portugal
    Leonardo Azevedo
    Maria João Pereira
    Manuel C. Ribeiro
    Amílcar Soares
    International Journal of Health Geographics, 19
  • [2] Geostatistical COVID-19 infection risk maps for Portugal
    Azevedo, Leonardo
    Pereira, Maria Joao
    Ribeiro, Manuel C.
    Soares, Amilcar
    INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2020, 19 (01)
  • [3] Geostatistical techniques for incorporating spatial correlation into land use change models
    Ademola, K. Braimoh
    Onishi, Takashi
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2007, 9 (04): : 438 - 446
  • [4] Geostatistical Methods to Build Citrus Cross-Pollination Risk Maps
    Molto, Enrique
    Orts, Carmen
    Pardo, Jose L.
    Izquierdo-Sanz, Hector
    AGRONOMY-BASEL, 2022, 12 (11):
  • [5] EpiGeostats: An R Package to Facilitate Visualization of Geostatistical Disease Risk Maps
    Ribeiro, Manuel
    Azevedo, Leonardo
    Pereira, Maria Joao
    MATHEMATICAL GEOSCIENCES, 2024, 56 (01) : 103 - 119
  • [6] EpiGeostats: An R Package to Facilitate Visualization of Geostatistical Disease Risk Maps
    Manuel Ribeiro
    Leonardo Azevedo
    Maria João Pereira
    Mathematical Geosciences, 2024, 56 : 103 - 119
  • [7] Streets and the shaping of towns and cities
    Al-Kodmany, K
    JOURNAL OF ARCHITECTURAL AND PLANNING RESEARCH, 2003, 20 (02) : 179 - 180
  • [8] Streets and the shaping of towns and cities
    Vernez Moudon, A
    URBAN MORPHOLOGY, 2004, 8 (02): : 129 - 130
  • [9] Incorporating risk into business process models
    Cope, E. W.
    Kuester, J. M.
    Etzweiler, D.
    Deleris, L. A.
    Ray, B.
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2010, 54 (03)
  • [10] Mapping Malaria Risk in Bangladesh Using Bayesian Geostatistical Models
    Reid, Heidi
    Haque, Ubydul
    Clements, Archie C. A.
    Tatem, Andrew J.
    Vallely, Andrew
    Ahmed, Syed Masud
    Islam, Akramul
    Haque, Rashidul
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2010, 83 (04): : 861 - 867