CONDITION FOR A BIVARIATE NORMAL PROBABILITY-DISTRIBUTION IN PHASE-SPACE TO BE A QUANTUM STATE

被引:5
|
作者
KRUGER, J
机构
[1] Institute for Theoretical Physics, University of Ghent, B9000 Ghent
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 09期
关键词
D O I
10.1103/PhysRevA.46.5385
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order that a bivariate normal probability distribution in phase space with variances sigma(q), sigma(p) and covariance sigma(q,p) may correspond to a Wigner distribution of a pure or a mixed state, it is n and sufficient that Heisenberg's uncertainty relation in Schrodinger form sigma(q)sigma(p)-sigma(q,p)2 greater-than-or-equal-to HBAR2/4 should be satisfied. The diagonalization of the corresponding density matrix entails a correspondence between the statistical and the physical properties of temperature-dependent oscillator states; the expansion of the density matrix into coherent states allows a physical interpretation in phase space.
引用
收藏
页码:5385 / 5388
页数:4
相关论文
共 50 条