DISCRETE STEADY STATES OF NEURONAL MEMBRANES CONSISTENT WITH AN EVOLUTIONARY PRINCIPLE

被引:2
|
作者
BASS, L
机构
关键词
D O I
10.1016/0022-5193(71)90098-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:577 / &
相关论文
共 50 条
  • [1] Principle of entropy maximization for nonequilibrium steady states
    Shapiro, AA
    Stenby, EH
    THERMAL NONEQUILIBRIUM PHENOMENA IN FLUID MIXTURES, 2002, 584 : 61 - 73
  • [2] A local-global principle for nonequilibrium steady states
    Calvert, Jacob
    Randall, Dana
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 120 (42)
  • [3] Is the thermodynamic behavior of the noble fluids consistent with the principle of corresponding states?
    Kulinskii, V. L.
    Malomuzh, N. P.
    Matvejchuk, O. I.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (21) : 4560 - 4572
  • [4] The steady states and robustness of fuzzy discrete dynamic systems
    Gavalec, Martin
    Plavka, Jan
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 98 - 105
  • [5] Steady states in the scheduling of discrete-time systems
    Gavalec, M.
    Ponce, D.
    Zimmermann, K.
    INFORMATION SCIENCES, 2019, 481 : 219 - 228
  • [6] THERMODYNAMICS OF STEADY STATES - WEAK ENTROPY-PRODUCTION PRINCIPLE
    TYKODI, RJ
    PHYSICA, 1974, 72 (02): : 341 - 354
  • [7] A MINIMUM-PRINCIPLE FOR NON-EQUILIBRIUM STEADY STATES
    BAK, TA
    JOURNAL OF PHYSICAL CHEMISTRY, 1955, 59 (07): : 665 - 668
  • [8] Olfactory pattern classification by discrete neuronal network states
    Jörn Niessing
    Rainer W. Friedrich
    Nature, 2010, 465 : 47 - 52
  • [9] Olfactory pattern classification by discrete neuronal network states
    Niessing, Joern
    Friedrich, Rainer W.
    NATURE, 2010, 465 (7294) : 47 - U53
  • [10] Convergence to steady states of solutions of semilinear evolutionary integral equations
    Ralph Chill
    Eva Fašangová
    Calculus of Variations and Partial Differential Equations, 2005, 22 : 321 - 342