ELECTRON HEAT-TRANSPORT WITH NON-MAXWELLIAN DISTRIBUTIONS

被引:16
|
作者
LIU, JM
DEGROOT, JS
MATTE, JP
JOHNSTON, TW
DRAKE, RP
机构
[1] INRS ENERGIE & MAT, VARENNES J3X 1S2, PQ, CANADA
[2] LAWRENCE LIVERMORE NATL LAB, PLASMA PHYS RES INST, LIVERMORE, CA 94551 USA
关键词
D O I
10.1063/1.870892
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Measurements are presented of electron heat transport with non-Maxwellian (flattopped) distributions due to inverse bremsstrahlung absorption of intense microwaves in the University of California at Davis Aurora II device [Rogers et al., Phys. Fluids B 1, 741 (1989)]. The plasma is created by pulsed discharge in a cylindrical vacuum chamber with surface magnets arranged to create a density gradient. The ionization fraction (approximately 1%) is high enough that charged particle collisions are strongly dominant in the afterglow plasma. A short microwave pulse (approximately 2 mus) heats a region of the afterglow plasma (n(e)/n(cr) less-than-or-equal-to 0.5) creating a steep axial (L(T) approximately 1 - 10lambda(ei)) temperature gradient. Langmuir probes are used to measure the relaxation of the heat front after the microwave pulse. Time and space resolved measurements show that the isotropic component of the electron velocity distribution is flat topped (approximately exp[-(nu/nu(m))m], m >2) in agreement with Fokker-Planck calculations using the measured density profile. Classical heat transport theory is not valid both because the isotropic component of the electron velocity distribution is flattopped and the temperature gradients are very steep.
引用
收藏
页码:3570 / 3576
页数:7
相关论文
共 50 条
  • [1] ELECTRON HEAT-TRANSPORT OF NON-MAXWELLIAN DISTRIBUTIONS
    STRAUSS, M
    HAZAK, G
    SHVARTS, D
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1984, 17 (02) : 327 - 335
  • [2] Non-Maxwellian electron distributions in clusters of galaxies
    Kaastra, J. S.
    Bykov, A. M.
    Werner, N.
    [J]. ASTRONOMY & ASTROPHYSICS, 2009, 503 (02) : 373 - 378
  • [3] NON-MAXWELLIAN ELECTRON DISTRIBUTIONS IN IONIZING PLASMAS
    MARCHAND, R
    MATTE, JP
    PARBHAKAR, K
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (02): : 485 - 491
  • [4] Nonlocal electron heat transport under the non-Maxwellian distribution function
    Li, Kai
    Huo, Wen Yi
    [J]. PHYSICS OF PLASMAS, 2020, 27 (06)
  • [5] Observation of non-Maxwellian electron distributions in the NSTX divertor
    Jaworski, M. A.
    Bell, M. G.
    Gray, T. K.
    Kaita, R.
    Kaganovich, I.
    Kallman, J.
    Kugel, H. W.
    LeBlanc, B.
    McLean, A. G.
    Sabbagh, S. A.
    Scotti, F.
    Soukhanovskii, V. A.
    Stotler, D. P.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S384 - S387
  • [6] NON-MAXWELLIAN ELECTRON DISTRIBUTIONS IN MODELS OF THE SOLAR ATMOSPHERE
    MACNEICE, P
    FONTENLA, J
    LJEPOJEVIC, NN
    [J]. ASTROPHYSICAL JOURNAL, 1991, 369 (02): : 544 - 548
  • [7] Electron excitation rates in the solar corona for non-Maxwellian electron distributions
    Dzifcáková, E
    [J]. SOLAR PHYSICS, 2000, 196 (01) : 113 - 127
  • [8] MEASUREMENT OF NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTIONS IN A REFLEX DISCHARGE
    PHIPPS, CR
    BERSHADER, D
    [J]. JOURNAL OF PLASMA PHYSICS, 1978, 19 (APR) : 267 - 280
  • [9] Electron Excitation Rates in the Solar Corona for non-Maxwellian Electron Distributions
    Elena Dzifčáková
    [J]. Solar Physics, 2000, 196 : 113 - 127
  • [10] A SET OF STATIONARY NON-MAXWELLIAN DISTRIBUTIONS
    KANIADAKIS, G
    QUARATI, P
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 192 (04) : 677 - 690