Construction of new larger (a, d)-edge antimagic vertex graphs by using adjacency matrices

被引:0
|
作者
Rahmawati, S. [1 ]
Sugeng, K. A. [1 ]
Silaban, D. R. [1 ]
Miller, M. [2 ]
Baca, M. [3 ]
机构
[1] Univ Indonesia, Dept Math, Depok 16424, Indonesia
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[3] Tech Univ, Dept Appl Math & Informat, Kosice 04200, Slovakia
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G - G(V, E) be a finite simple undirected graph with vertex set V and edge set E, where vertical bar E vertical bar and vertical bar V vertical bar are the number of edges and vertices on G. An (a,d)-edge antimagic vertex ((a,d)-EAV) labeling is a one-to-one mapping f from V (G) onto {1, 2,..., vertical bar V vertical bar} with the property that for every edge xy is an element of E, the edge-weight set is equal to {f(x) + f(y) : x, y is an element of V} = {a, a+d, a+2d,..., a+(vertical bar E vertical bar- 1) d}, for some integers a > 0, d >= 0. An (a, d)-edge antimagic total ((a,d)-EAT) labeling is a one-to-one mapping f from V boolean OR E onto {1, 2,..., vertical bar V vertical bar + vertical bar E vertical bar} with the property that for every edge xy is an element of E, the edge-weight set is equal to {f(x)+ f(y)+f(xy) : x, y is an element of V, xy is an element of E} = {a, a+d, a+2d,..., a+(vertical bar E vertical bar- 1) d}, where a > 0, d >= 0 are two fixed integers. Such a labeling is called a super (a, d)edge antimagic total ((a, d)-SEAT) labeling if f(V) = {1, 2,..., vertical bar V vertical bar}. A graph that has an (a, d)-EAV ((a,d)-EAT or (a,d)-SEAT) labeling is called an (a,d)-EAV ((a,d)-EAT or (a,d)-SEAT) graph. For an (a,d)EAV (or (a,d)-SEAT) graph G, an adjacency matrix of G is a vertical bar V vertical bar x vertical bar V vertical bar matrix AG = [a(ij)] such that the entry aij is 1 if there is an edge from vertex with index i to vertex with index j, and entry a(ij) is 0 otherwise. This paper shows the construction of new larger (a,d)-EAV graph from an existing (a,d)-EAV graph using the adjacency matrix, for d = 1, 2. The results will be extended for (a,d)-SEAT graphs with d = 0, 1, 2, 3.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 50 条
  • [1] SPARSE GRAPHS WITH VERTEX ANTIMAGIC EDGE LABELINGS
    Miller, Mirka
    Phanalasy, Oudone
    Ryan, Joe
    Rylands, Leanne
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (02) : 193 - 198
  • [2] On totally antimagic, edge-magic and vertex-antimagic total graphs
    Ahmed, Mohammed Ali
    Babujee, J. Baskar
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    UTILITAS MATHEMATICA, 2019, 111 : 161 - 173
  • [3] CONSTRUCTIONS OF H-ANTIMAGIC GRAPHS USING SMALLER EDGE-ANTIMAGIC GRAPHS
    Dafik
    Slamin
    Tanna, Dushyant
    Semanicova-Fenovcikova, Andrea
    Baca, Martin
    ARS COMBINATORIA, 2017, 133 : 233 - 245
  • [4] On (a, d)-vertex-antimagic total labeling of Harary graphs
    Hussain, M.
    Ali, Kashif
    Rahim, M. T.
    Baskoro, Edy Tri
    UTILITAS MATHEMATICA, 2010, 83 : 73 - 80
  • [5] Generating New Graphs Using Boolean Operations (∨ and ∧) on Adjacency and Antiadjacency Matrices of Graphs
    Putri, Gisca A. T. A.
    Adinegoro, Wismoyo
    Sugeng, Kiki A.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2015 (ISCPMS 2015), 2016, 1729
  • [6] On the construction of cospectral graphs for the adjacency and the normalized Laplacian matrices
    Kannan, M. Rajesh
    Pragada, Shivaramakrishna
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 3009 - 3030
  • [7] On (a, d)-edge local antimagic coloring number of graphs
    Sundaramoorthy, Rajkumar
    Moviri Chettiar, Nalliah
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1994 - 2002
  • [8] The Construction of P2 (sic) H-antimagic graph using smaller edge-antimagic vertex labeling
    Prihandini, Rafiantika M.
    Agustin, I. H.
    Dafik
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [9] Super (a, d)-edge antimagic total labelings of friendship graphs
    Arumugam, S.
    Nalliah, M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 53 : 237 - 243
  • [10] A study on (a, d)-antimagic graphs using partition
    Vilfred, V.
    Florida, L. Mary
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2011, 79 : 173 - 187