INDUCED SUBGRAPHS AND WELL-QUASI-ORDERING

被引:44
|
作者
DAMASCHKE, P
机构
[1] Friedrich-Schiller Universität Jena, Sektion Mathematik, Jena, Universitätshochhaus
关键词
D O I
10.1002/jgt.3190140406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study classes of finite, simple, undirected graphs that are (1) lower ideals (or hereditary) in the partial order of graphs by the induced subgraph relation ≤i, and (2) well‐quasi‐ordered (WQO) by this relation. The main result shows that the class of cographs (P4‐free graphs) is WQO by ≤i, and that this is the unique maximal lower ideal with one forbidden subgraph that is WQO. This is a consequence of the famous Kruskal theorem. Modifying our idea we can prove that P4‐reducible graphs build a WQO class. Other examples of lower ideals WQO by ≤i are also given. Copyright © 1990 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:427 / 435
页数:9
相关论文
共 50 条
  • [1] Bipartite Induced Subgraphs and Well-Quasi-Ordering
    Korpelainen, Nicholas
    Lozin, Vadim V.
    JOURNAL OF GRAPH THEORY, 2011, 67 (03) : 235 - 249
  • [2] Labelled Induced Subgraphs and Well-Quasi-Ordering
    Atminas, Aistis
    Lozin, Vadim V.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2015, 32 (03): : 313 - 328
  • [3] Labelled Induced Subgraphs and Well-Quasi-Ordering
    Aistis Atminas
    Vadim V. Lozin
    Order, 2015, 32 : 313 - 328
  • [4] SUBGRAPHS AND WELL-QUASI-ORDERING
    DING, GL
    JOURNAL OF GRAPH THEORY, 1992, 16 (05) : 489 - 502
  • [5] Two forbidden induced subgraphs and well-quasi-ordering
    Korpelainen, Nicholas
    Lozin, Vadim
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1813 - 1822
  • [6] Induced minors and well-quasi-ordering
    Blasiok, Jaroslaw
    Kaminski, Marcin
    Raymond, Jean-Florent
    Trunck, Theophile
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 110 - 142
  • [7] WELL-QUASI-ORDERING SEQUENCES
    LAVER, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 841 - &
  • [8] ON WELL-QUASI-ORDERING FINITE SEQUENCES
    BOLLERHOFF, U
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (03) : 227 - 230
  • [9] ON WELL-QUASI-ORDERING TRANSFINITE SEQUENCES
    NASHWILLIAMS, CS
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 61 : 33 - +
  • [10] Well-quasi-ordering Aronszajn lines
    Martinez-Ranero, Carlos
    FUNDAMENTA MATHEMATICAE, 2011, 213 (03) : 197 - 211