Probabilistic Human Modeling Based on Personal Construct Theory
被引:1
|
作者:
Motomura, Yoichi
论文数: 0引用数: 0
h-index: 0
机构:
JST, Natl Inst Adv Ind Sci & Technol, CREST, Digital Human Res Ctr, Tokyo 1350064, JapanJST, Natl Inst Adv Ind Sci & Technol, CREST, Digital Human Res Ctr, Tokyo 1350064, Japan
Motomura, Yoichi
[1
]
Kanade, Takeo
论文数: 0引用数: 0
h-index: 0
机构:
JST, Natl Inst Adv Ind Sci & Technol, CREST, Digital Human Res Ctr, Tokyo 1350064, JapanJST, Natl Inst Adv Ind Sci & Technol, CREST, Digital Human Res Ctr, Tokyo 1350064, Japan
Kanade, Takeo
[1
]
机构:
[1] JST, Natl Inst Adv Ind Sci & Technol, CREST, Digital Human Res Ctr, Tokyo 1350064, Japan
personal construct theory;
cognitive human model;
Bayesian network;
evaluation grid;
probabilistic modeling;
D O I:
10.20965/jrm.2005.p0689
中图分类号:
TP24 [机器人技术];
学科分类号:
080202 ;
1405 ;
摘要:
We have initiated a project for constructing a mathematical model of human cognitive and psychological functions, executable on a computer. To this end, we propose probabilistic modeling based on the Personal Construct Theory, a basic theory used in cognitive/evaluative structure models for individuals. After extracting a skeleton structure using the Evaluation Grid, Bayesian network model is constructed though data learning. By executing a probabilistic reasoning algorithm on the constructed model, our proposal is applied to user-adaptable information systems, information recommendation, car navigation systems, etc.