ON EIGENCURVES OF ELLIPTIC BOUNDARY-VALUE-PROBLEMS

被引:5
|
作者
BINDING, PA [1 ]
BROWNE, PJ [1 ]
HUANG, YX [1 ]
PICARD, RH [1 ]
机构
[1] UNIV WISCONSIN,DEPT MATH SCI,MILWAUKEE,WI 53201
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1017/S0308210500029000
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a selfadjoint uniformly elliptic partial differential operator on a bounded domain in R(n), and let S be a (possibly indefinite) L infinity multiplication operator. Estimates of the form sigma-lambda + omicron-(lambda) and sigma-lambda + beta + omicron-(1) are sought for the eigenvalues mu-(lambda) of lambda-S - T as lambda --> +/- infinity. A necessar and sufficient condition is also obtained for existence of linear eigencurves, i.e. mu-(lambda) = sigma-lambda + beta.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 50 条