BOUNDING SAMPLE-SIZE WITH THE VAPNIK-CHERVONENKIS DIMENSION

被引:23
|
作者
SHAWETAYLOR, J
ANTHONY, M
BIGGS, NL
机构
[1] UNIV LONDON ROYAL HOLLOWAY & BEDFORD NEW COLL,DEPT MATH,EGHAM TW20 0EX,SURREY,ENGLAND
[2] UNIV LONDON LONDON SCH ECON & POLIT SCI,DEPT MATH SCI,LONDON WC2A 2AE,ENGLAND
关键词
LEARNING; VAPNIK-CHERVONENKIS DIMENSION; PROBABLY APPROXIMATELY CORRECT (PAC); SAMPLE;
D O I
10.1016/0166-218X(93)90179-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proof that a concept class is learnable provided the Vapnik-Chervonenkis dimension is finite is given. The proof is more explicit than previous proofs and introduces two new parameters which allow bounds on the sample size obtained to be improved by a factor of approximately 4 log2(e).
引用
收藏
页码:65 / 73
页数:9
相关论文
共 50 条
  • [1] Sample compression, learnability, and the Vapnik-Chervonenkis dimension
    Floyd, S
    Warmuth, M
    [J]. MACHINE LEARNING, 1995, 21 (03) : 269 - 304
  • [2] LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION
    BLUMER, A
    EHRENFEUCHT, A
    HAUSSLER, D
    WARMUTH, MK
    [J]. JOURNAL OF THE ACM, 1989, 36 (04) : 929 - 965
  • [3] BOUNDING THE VAPNIK-CHERVONENKIS DIMENSION OF CONCEPT CLASSES PARAMETERIZED BY REAL NUMBERS
    GOLDBERG, PW
    JERRUM, MR
    [J]. MACHINE LEARNING, 1995, 18 (2-3) : 131 - 148
  • [4] THE VAPNIK-CHERVONENKIS DIMENSION OF A RANDOM GRAPH
    ANTHONY, M
    BRIGHTWELL, G
    COOPER, C
    [J]. DISCRETE MATHEMATICS, 1995, 138 (1-3) : 43 - 56
  • [5] Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers
    Sandia Natl Lab, Albuquerque, United States
    [J]. Mach Learn, 2-3 (131-148):
  • [6] Vapnik-chervonenkis dimension of parallel arithmetic computations
    Alonso, Cesar L.
    Montana, Jose Luis
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2007, 4754 : 107 - +
  • [7] Vapnik-chervonenkis dimension of a random graph
    [J]. 1600, (Elsevier Science B.V., Amsterdam, Netherlands):
  • [8] On the Vapnik-Chervonenkis dimension of the Ising perceptron
    Mertens, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08): : L199 - L204
  • [9] RESULTS ON LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION
    LINIAL, N
    MANSOUR, Y
    RIVEST, RL
    [J]. INFORMATION AND COMPUTATION, 1991, 90 (01) : 33 - 49
  • [10] PROBABILISTIC ESTIMATION OF VAPNIK-CHERVONENKIS DIMENSION
    Klesk, Przemyslaw
    [J]. ICAART: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2012, : 262 - 270